

The Effects of Inflation Gas on Tire Laboratory Test Performance

James D. MacIsaac Jr., USDOT - NHTSA

Larry Evans & John Harris, Transportation Research Center, Inc. Ed Terrill, Ph.D., Akron Rubber Development Laboratory, Inc.

> Presented at ITEC 2008 Akron, OH September 17, 2008

National Highway Traffic Safety Administration

NHTSA Traffic Safety Facts, 2006*

- In 2006, there were an estimated 5,973,000 police-reported traffic crashes, in which:
 - 42,642 people were killed
 - 2,575,000 people were injured
 - 4,189,000 crashes involved property damage only
- Motor vehicle crashes are the leading cause of death for every age from ages 2 through 34
- From 1994 to 2004, NHTSA estimates that about 400 fatalities, annually (~1% of total motor vehicle fatalities), may be attributed to tire failures of all types

*NHTSA Traffic Safety Facts, 2006 Data, DOT HS 810 809, NHTSA's National Center for Statistics and Analysis, Updated March 2008

Nitrogen Inflation of Pneumatic Tires

Inflation of tires with N₂ gas is presumed to be beneficial. However, there are a wide variety of claims and counter-claims:

- Better inflation pressure retention
- Lower rolling resistance
- Better treadwear
- Lower running temperatures
- Better tire durability
- Less moisture
- Etc.

NHTSA Testing of Tires with Nitrogen Inflation

NHTSA re-directed tires from other tire programs to address four basic questions:

- Is there a systematic and quantifiable difference in the inflation pressure loss rate (IPLR) of tires when inflated with gases of varying nitrogen to oxygen ratios?
- Are the observed differences in IPLR uniform among tires, or are they related to variables such as initial inflation pressure, or tire design and composition?
- Are there direct effects of inflation gas composition on the rolling resistance of tires?
- Are there differences in tire durability performance after accelerated aging with different nitrogen-to-oxygen ratios?

Testing

In total, twenty-five different passenger or light truck tire models were inflated with:

- Shop air with air line dryer
- Dry N₂ gas from 94 to 99% purity
 - Initial purge and refill used
- Gas composition measured at the beginning and end of test

Tires were tested for:

- Inflation pressure loss rate
- Laboratory rolling resistance
- Roadwheel endurance after oven aging

Tire Inflation Pressure Loss

Under-inflated tires are a significant problem

- According to a NHTSA study, 27% of passenger cars and 32% of light trucks have at least one tire that is substantially underinflated*
 - "Operating a vehicle with substantially under-inflated tires can result in a premature tire failure, such as instances of tread separation and blowouts, with the potential for a loss of control of the vehicle. Underinflated tires also shorten tire life and increase fuel consumption." **

*Tire Pressure Special Study @ http://www.nhtsa.dot.gov/people/ncsa/

**U.S. Transportation Secretary Norman Y. Mineta @ http://www.dot.gov/affairs/nhtsa4601.htm

Tire Inflation Pressure Loss

- Tires lose inflation gases continuously, since rubber compounds are permeable to gas molecules (losses also exist through tire/wheel/valve interfaces)
- Tubeless tires require an innerliner compound with low permeability to limit the loss of inflation
- The ASTM F1112-06 test measures the <u>static</u> loss of inflation gas from a tire over time

• Data is reported as % loss / month

ASTM F1112-06 Inflation Pressure Loss Rate (IPLR)

Test Room

- Mean temperatures of 21, 24, 30 or 38°C (normal test is 21°C) ±0.6°C (±1°F)
- Forcibly circulated air controlled at ±3°C (±5°F)

Gauges or Pressure Transducers

 Resolution 2 kPa (0.25 psi) accurate to ±1% of measured value (operating within 40 to 90% of full scale)

Data Acquisition

 Record data once per day for 180 days; or computer data acquisition of more data points per day for a shorter duration test

Barometer (High Accuracy)

ASTM F1112-06 Inflation Pressure Loss Rate (IPLR)

Tires are inflated to a specified pressure and sit static and unloaded in a controlled environment

- NHTSA testing used FMVSS No. 139 High Speed test pressures
- NHTSA testing was conducted at 21°C ± 3°C

The pressure and conditions are monitored over time

- NHTSA testing used 90 days with continuous monitoring of the pressure via computer interface
 - Per the ASTM standard the first 30 days data was discarded
- Data is then corrected to a standard temperature and barometric pressure
 - 21°C and 101.3 kPa

Example Data Output

Rate stabilizes during initial 30 days

30 - 90 day data is used to calculate Inflation Pressure Loss Rate (IPLR)

Is there a difference in (IPLR) when varying N_2/O_2 ratio?

One-way ANOVA analysis of IPLR:

Dependent Variable: IPLR, Rate @ 90 Days, %/month								
		Sum of						
Source	DF	Squares	Mean S	quare	F Value	Pr > F	R-Square	
Model	27	56.41	2.089		22.56	<.0001	0.902	
Error	66	6.11	0.092					
Corrected Total	93	62.52						
Source	D	F Туре	III SS	Mean	Square	F Value	Pr > F	
Inflation Gas	1	6.84	2	6.842		73.90	<.0001	
Test Lab	1	0.01	7	0.017		0.19	0.6668	
Tire Type	25	40.5	53	1.621		17.51	<.0001	

Inflation Gas and Tire Type are Significant Variables

IPLR with Air vs. N₂ Inflation

IPLR

N2

P

IPLR, Inflation with Air or N2 gas **17 Different** 4.5 100% **Models of** Tires 90% Air 80% 3.5 70% Average IPLR, 90-da IPLR for N_2 60% 2.5 was 66% of Air 40% 1.5 30% 20% 0.5 10% 04 **B1 B**7 **B**8 **B**9 **C7 C**8 D6 G M3 N 2 **P**3 **S1 T2** U2 Y2

Tire Type

Tire Parameters

Approximate innerliner variations:

- Polymer: 100% IIR → 80/20 NR/SBR
- Carbon black: 53 → 76 phr
- Non-black filler: 0 → 22 phr
- Total filler: 67 → 105 phr
- Volatiles: 13 → 26 phr
- Thickness 0.67 → 1.85 mm

Initial Inflation Pressure: 220 -> 521 kPa

IPLR Versus Tire Construction

- Of the variables studied, innerliner composition and minimum innerliner thickness in the crown had most significant effect on IPLR
 - Filler and volatiles had significant, but lesser effects
- Analysis of <u>difference in IPLR</u> between air and N₂ (IPLR_{air} – IPLR_{nitrogen}) by tire type
 - No significant effect of any construction parameter
 - No significant effect of initial inflation pressure
 - i.e. no difference for Passenger vs. LT tires

Benefits of Nitrogen Inflation on IPLR Appear to be Applicable to All Tire Types

Oxygen Concentration Measurement Equipment

Balston ® 72-730 Oxygen Analyzer Accurate to <0.1% O₂

O₂ Migration During Test

Change in Percent Oxygen Concentration During IPL Test Versus Starting Oxygen Concentration

Change in O₂ Levels

Faster migration of O₂ changes mixture of gas during 90-day test

- Tires inflated with air lost average of 1.5% O₂
- Tires inflated with N₂ lost or gained O₂ to approach equilibrium partial pressure

Validation of Laboratory Results with On-Vehicle Data

- O₂ levels were measured for 76 tires that were in-service (19 vehicles) in Akron, OH
- Tires were originally inflated with shop air at various locations, no special procedures

No Correlation Between Inflation Pressure and % O₂

O2 Content Versus Inflation Pressure In-Service Tires

During service with top-offs of normal air, the oxygen permeates out at a faster rate than the nitrogen. This can result in a >50% reduction in net oxygen levels in the

tire inflation

gas during

normal service.

O₂ Level Significantly Reduced In-Service

Oxygen Range (% of inflation gas)	Number of Tires
9 → 11	4
11.1 → 13	18
13.1 → 15	18
15.1 → 17	17
17.1 → 19	14
19.1 → 20.0	5
15.02	Average
2.79	Standard Deviation

Indicates Reduced Potential Benefits for N₂ Inflation in Normal Tire Service

IPLR Advantage for N₂ In Service

Dynamic Inflation Pressure Loss – Roadwheel Testing

Modified LTDE Test: Inflation Pressure vs. Roadwheel Hours (Capped Inflation - Pressure Corrected to 311.15 K)

Inflation Pressure Loss During Roadwheel Testing Was 37% Less for Tires Inflated with N₂ vs. Tires Inflated with Air

Change in %0, During Dynamic Loaded Operation

Higher %O₂ Gas Diffuses More Rapidly During Dynamic Roadwheel Testing

Does N₂ Have a <u>Direct</u> Effect on Rolling Resistance?

- 24 Tires were compared for Rolling Resistance, either inflated with N₂ or Air
 - SAE J1269 Single-Point Test
- Average Rolling Resistance
 - Air = 12.80 pounds ±0.38
 - N₂ = 12.65 pounds ±0.44
- No Direct Effect Observed for N₂ Inflation on Tire Rolling Resistance
- The Only Significant Effect on Tire Rolling Resistance may be <u>Indirect</u>:
 - Due to Better Retention of Inflation Pressure over Time

Effects on Tire Durability

FMVSS No. 139 Endurance & Low Pressure Tests - Following 2-hr Break-in @ 50 mph, 65 C Oven Aging for 5 Weeks, Weekly Vent and Refill of Inflation Gas

The benefits of N₂ inflation on oven-aged tires has been shown*

The tires were filled with 50/50 N_2/O_2 , air or N_2 and oven-aged for 5 weeks @ 65°C

They were then tested according to the FMVSS 139 Endurance and Low Pressure Test (to failure or 35.5 hours stop-finish)

50/50 N_2/O_2 had a significant deleterious effect. Tires aged with N_2 or air inflation all passed test @ 35.5 hrs

* N. Tokita, W.D. Sigworth, G.H. Nybakkan, G.B. Ouyang, "Long-Term Durability of Tires," Paper 18D17, Proceedings of the International Rubber Conference, Kyoto, 1985, p. 672-679.

J. M. Baldwin, D.R. Bauer, and K.R. Ellwood, "Effects of Nitrogen Inflation on Tire Aging and Performance," Paper 2, presented at Rubber Division, ACS, Grand Rapids, MI, May 17-19, 2004.

U. Karmakar, "Effect of Nitrogen Purity on the Oxidation of Belt Coat Compound," presented at the International Tire Exposition and Conference, Akron, OH, September, 2006.

Conclusion (I)

In laboratory testing, tires inflated with 94-99% N₂ showed a 34% reduction in pressure loss versus tires inflated with air (78% N₂)

- Based on reduced O₂ observed for in-service tires, the benefits of N₂ in service would be significantly reduced
- Tires inflated with N₂ above 97% purity showed diffusion of O₂ into the tire at 90 days
- Similar reduction in IPLR for tires inflated with N₂ during 700-hour dynamic, loaded roadwheel test
- Innerliner composition and initial inflation pressure had no significant effect on reduction of IPLR for N₂ versus air

Conclusions (II)

Tire inflation with N₂ versus air had no significant effect on rolling resistance

 Benefits of N₂ will likely be <u>indirect</u> from improved retention of inflation pressure over time

Laboratory tire endurance after oven aging was reduced by high O₂ content in inflation gas during oven aging

- Tires inflated with air or N₂ during aging completed the post-oven 35.5 hour test with no failures
- Previous studies have shown benefits for tire roadwheel endurance when tires inflated with N₂ during aging

